

An Open-source Aerosol Dynamics and Computational Fluid Dynamics Model aerosolGDEFoam User Guide

Mino Woo¹, Robert T. Nishida^{2,3}, Mario A. Schriefl⁴, Marc E.J. Stettler¹ and Adam M. Boies²

¹ Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom ² Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom

³ Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G8, Canada

⁴ Institute of Electrical Measurement and Sensor Systems, Graz University of Technology, Graz 8010, Austria.

Source

 Woo et al. "Open-source Aerosol Dynamics and Computational Fluid Dynamics 2 Model: Nodal Method for Nucleation, Coagulation, and Surface growth", Journal, year, page. doi

Contents

- 1. Introduction
- 2. Code structure
- 3. Verification cases: general dynamic equation (GDE) without flow
 - 0. Preprocessing
 - 1. Pure coagulation
 - 2. Nucleation and coagulation
 - 3. Pure surface growth
 - 4. Nucleation, coagulation and surface growth (GDE)
- 4. Example case with flow

1. Introduction

• Implementation of nodal method for time dependent general dynamic equation including nucleation, surface growth, and coagulation mechanisms

Schematics of nucleation and coagulation algorithms in nodal method

1. Introduction

• Governing equations

Particles

$$\frac{\mathrm{d}N_{k}}{\mathrm{d}t} = J_{k}\xi_{k} + \underbrace{\frac{1}{2}\sum_{\substack{i=2\\j=2}}\chi_{ijk}\beta_{i,j}N_{i}N_{j} - N_{k}\sum_{\substack{i=2\\i=2}}\beta_{i,k}N_{i}}_{\text{coagulation}} + \begin{cases} \frac{V_{1}}{V_{k} - V_{k-1}}\beta_{1,k-1}(N_{1} - N_{\text{sat},1,k-1})N_{k-1} & \text{if } N_{1} > N_{\text{sat},1,k-1} \\ -\frac{V_{1}}{V_{k+1} - V_{k}}\beta_{1,k+1}(N_{1} - N_{\text{sat},1,k+1})N_{k+1} & \text{if } N_{1} < N_{\text{sat},1,k+1} \\ -\frac{V_{1}}{V_{k+1} - V_{k}}\beta_{1,k}(N_{1} - N_{\text{sat},1,k})N_{k} & \text{if } N_{1} > N_{\text{sat},1,k} \\ \frac{V_{1}}{V_{k} - V_{k-1}}\beta_{1,k}(N_{1} - N_{\text{sat},1,k})N_{k} & \text{if } N_{1} < N_{\text{sat},1,k} \\ \underbrace{\frac{V_{1}}{V_{k} - V_{k-1}}}_{\text{surface growth}} \\ \end{bmatrix}$$

Monomer

$$\frac{\mathrm{d}N_{1}}{\mathrm{d}t} = J_{1}\xi_{1} + \begin{cases} -\beta_{1,k-1}(N_{1} - N_{\mathrm{sat},1,k-1})N_{k-1} & \text{if } N_{1} > N_{\mathrm{sat},1,k-1} \\ -\beta_{1,k+1}(N_{1} - N_{\mathrm{sat},1,k+1})N_{k+1} & \text{if } N_{1} < N_{\mathrm{sat},1,k+1} \\ -\beta_{1,k}(N_{1} - N_{\mathrm{sat},1,k})N_{k} & \text{if } N_{1} > N_{\mathrm{sat},1,k} \\ -\beta_{1,k}(N_{1} - N_{\mathrm{sat},1,k})N_{k} & \text{if } N_{1} < N_{\mathrm{sat},1,k} \end{cases}$$

Nucleation rate

$$J_{k} = N_{\text{sat}}^{2} S v_{1} \left(\frac{2\sigma}{\pi m_{1}}\right)^{0.5} \exp\left(\theta - \frac{4\theta^{3}}{27 \log^{2} S}\right)$$

Size operator

$$\xi_{k} = \begin{cases} \frac{v^{*}}{v_{k}}; & \text{if } v_{k-1} \le v^{*} \le v_{k}, \\ \frac{v^{*}}{v_{2}}; & \text{if } v^{*} \le v_{1}, \\ 0; & \text{otherwise} \end{cases}$$

Collision frequency

- Free molecular regime (Kn>10)

$$\beta_{ij} = \left(\frac{3}{4\pi}\right)^{1/6} \left(\frac{6k_{\rm B}T}{\rho_{\rm p}}\right)^{1/2} \left(\frac{1}{v_i} + \frac{1}{v_j}\right)^{1/2} \left(v_i^{1/3} + v_j^{1/3}\right)^2$$

- Continuum regime (Kn <<1)

$$\beta_{ij} = 2\pi (D_i + D_j)(d_i + d_j) \\ \times \left[\frac{d_i + d_j}{d_i + d_j + 2(g_i^2 + g_j^2)^{1/2}} + \frac{8(D_i + D_j)}{\left(\overline{c_i^2} + \overline{c_j^2}\right)^{1/2} (d_i + d_j)} \right]^{-1}$$

2. Code structure

- Developed on OpenFOAM 6 from The OpenFOAM Foundation
 - For download and install, visit https://openfoam.org/version/6/
- File structure

2. Code structure

constant/transportProperties

Parameters for nucleation rate by self-consistent correction (SCC) model*, Eq. (5) in the paper

$$J_{k} = n_{\text{sat}}^{2} S v_{1} \left(\frac{2\sigma}{\pi m_{1}}\right)^{0.5} \exp\left(\theta - \frac{4\theta^{3}}{27 \log^{2} S}\right)$$

 $p_{sat} = p \exp(13.07 - 36373/T)$: Saturation pressure

 $\sigma = (948 - 0.202T) / 1000$: Surface tension

*Reference: Girshick, S. L., and Chiu, Chia Pin. (1990). Kinetic Nucleation Theory: A New Expression for the Rate of Homogeneous Nucleation from an Ideal Supersaturated Vapor, J. Chem. Phys. 93:1273–1277.

2. Code structure

constant/transportProperties (cont.)

*Ref.: A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems, Prakash et al., Aerosol Science Technology, 37:892-898, 2003.

2. Code structure

system/controlDict

startFrom	<pre>startTime;//lat</pre>	Start from initial condition or restart at latest time
startTime	0;	
stopAt	endTime;	
endTime	1.3745;	Time at which the simulation ends
deltaT	0.0001;	Time step
writeControl	timestep;//adjustableRunTime Write based on time step or time	
writeInterval	2749;//0.2749	Write interval based on time step or time
		÷

- For more details on the usage of controlDict in OpenFOAM 6
 - <u>https://cfd.direct/openfoam/user-guide/v6-controldict/</u>

3. Verification cases: general dynamic equation (GDE) without flow

- Test problem: time evolution of monomer and particles
 - Zero dimensional problem dependent only on time
 - For pure coagulation (1.pureCoag)
 - Self-preserving distribution from monodisperse particles at the smallest node
 - For the other examples (2.NucCoag, 3.pureSurfaceGrowth, 4.GDE)
 - Aluminum particle formation and growth from a vapor at 1773K as it is passed into a condenser with a cooling rate of 1000K/s*.
- Computational domain
 - Cubic domain with cyclic boundary conditions for each pair of opposite faces

- 1×1×1 unit cell for uniform field (no spatial difference)
- Enable 0D simulation by OpenFOAM based on 3D solver

*Ref.: Panda, S. and S.E. Pratsinis, *Modeling the synthesis of aluminum particles by evaporation-3 condensation in an aerosol flow reactor.* Nanostructured Materials, 1995. **5**(7): p. 755-767

3. Verification cases: general steps to setup the test case

- Pre-step 1: Generate mesh
 - Go to run folder (e.g. ./1.pureCoag/40) and ./system/blockMeshDict

3. Verification cases: general steps to setup the test case

- Pre-step 2: Compile
 - Go to source folder cd src/appSrc/aerosolGDEFoam
 - ./wmake
- Pre-step 3: Data creation before running
 - Go back to run folder and ./createFiles

Create a number of files depending on the number of nodes defined in constant/tranportProperties

Initial condition should be specified after file creation

- Post-step: data merging for verification cases
 - In run folder ./dataMerge

Take the lines for number concentrations at each node and merge

3.1 Pure coagulation

- Step 1: test condition
 - Go to ./constant/transportProperties
 - Set the number of node, coolrate and models

coolrate coolrate [0 0 -1 1 0 0 0] 0; mwParticle mwParticle [1 0 0 0 -1 0 0] 0.026981539; // Molecular weight(kg/mol) rhoParticle rhoParticle [1 -3 0 0 0 0 0] 2700; // Particle density (kg/m3) surTens_A surTens_A [1 0 -2 0 0 0 0] 948; // Surface tension coefficient surTens_B surTens_B [1 0 -2 -1 0 0 0] 0.202; // Surface tension coefficient satVap_A satVap_A [0 0 0 0 0 0] 13.07; // Saturation vapor pressure coefficient satVap_B satVap_B [0 0 0 1 0 0 0] 36373; // Saturation vapor pressure coefficient nodes nodes [0 0 0 0 0 0 0] 41; // number of nodes nucleation false; growth false; advection false;

3.1 Pure coagulation

- Step 2: Set initial condition
 - Run ./createFile
 - Go to ./0 and open nPartNode2

3.1 Pure coagulation

- Step 3: solver control
 - Go to ./system/controlDict
 - Setup time step and write interval

application	<pre>scalarTransportFoam;</pre>	
startFrom	latestTime;	
startTime	0;	
stopAt	endTime;	
endTime	1e-6;	
deltaT	1e-11;	
writeControl	adjustableRunTime;	
writeInterval	1e-7;	

• Step 4: Restart with increased time step depending on characteristic coagulation time

3.1 Pure coagulation

Summary of test conditions

Number of nodes	41, 71 and 101
Initial concentration	nPartNode2: 1e24
Coolrate	0
Time step	Depending on characteristic coagulation time*
Models	nucleation false; coagulation true; growth false; advection false;

*Note:

- Time step is initially given as 1e-11 and increased when restart
- Self-preserving distribution is eventually obtained with time step higher than the criteria but with significant mass defect (valid only for pure coagulation)

3.1 Pure coagulation

Result

3.2 Nucleation and coagulation

Test conditions

Number of nodes	41
Initial concentration	nPartNode1: 2.4214e21
Coolrate	1000
Time step	1e-4
Models	nucleation true; coagulation true; growth false; advection false;

3.2 Nucleation and coagulation

Result

3.3 Pure surface growth

Test conditions

Number of nodes	41
Initial concentration	nPartNode1: 2.4214e21 nPartNode25: 1e10
Coolrate	1000
Time step	1e-6
Models	nucleation false; coagulation false; growth true; advection false;

3.3 Pure surface growth

Result

3.4 GDE

Test conditions

Number of nodes	41
Initial concentration	nPartNode1: 2.4214e21
Coolrate	1000
Time step	1e-5
Models	nucleation true; coagulation true; growth true; advection false;

3.4 GDE

Result

4. Example case with flow

- Pre-calculation
 - 2D axisymmetric computational domain and boundary conditions

Heat loss, $h=1.5 T_a=300 K$

- Solver
 - rhoSimpleFoam

4. Example case with flow

Results

4. Example case with flow

- Copy
 - U,T,p from precalculation
- Test conditions

Number of nodes	41
Initial concentration	_nPart: 1e10 (before createFiles)
Coolrate	0
Time step	1e-5
Models	nucleation true; coagulation true; growth true; advection true;

4. Example case with flow

Results

Thank you